torchtraining.functional.metrics.classification.binary module¶
-
torchtraining.functional.metrics.classification.binary.accuracy(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method mean of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.Accuracyfor details.
-
torchtraining.functional.metrics.classification.binary.balanced_accuracy(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.BalancedAccuracyfor details.
-
torchtraining.functional.metrics.classification.binary.confusion_matrix(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method sum of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.ConfusionMatrixfor details.
-
torchtraining.functional.metrics.classification.binary.critical_success_index(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.CriticalSuccessIndexfor details.
-
torchtraining.functional.metrics.classification.binary.f1(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.F1for details.
-
torchtraining.functional.metrics.classification.binary.f_beta(output: torch.Tensor, target: torch.Tensor, beta: float, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FBetafor details.
-
torchtraining.functional.metrics.classification.binary.false_discovery_rate(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FalseDiscoveryRatefor details.
-
torchtraining.functional.metrics.classification.binary.false_negative(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method sum of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FalseNegativefor details.
-
torchtraining.functional.metrics.classification.binary.false_negative_rate(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FalseNegativeRatefor details.
-
torchtraining.functional.metrics.classification.binary.false_omission_rate(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FalseOmissionRatefor details.
-
torchtraining.functional.metrics.classification.binary.false_positive(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method sum of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FalsePositivefor details.
-
torchtraining.functional.metrics.classification.binary.false_positive_rate(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.FalsePositiveRatefor details.
-
torchtraining.functional.metrics.classification.binary.jaccard(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method mean of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.Jaccardfor details.
-
torchtraining.functional.metrics.classification.binary.matthews_correlation_coefficient(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.MatthewsCorrelationCoefficientfor details.
-
torchtraining.functional.metrics.classification.binary.negative_predictive_value(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.NegativePredictiveValuefor details.
-
torchtraining.functional.metrics.classification.binary.precision(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.Precisionfor details.
-
torchtraining.functional.metrics.classification.binary.recall(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.Recallfor details.
-
torchtraining.functional.metrics.classification.binary.specificity(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.Specificityfor details.
-
torchtraining.functional.metrics.classification.binary.true_negative(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method sum of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.TrueNegativefor details.
-
torchtraining.functional.metrics.classification.binary.true_positive(output: torch.Tensor, target: torch.Tensor, threshold: float = 0.0, reduction: Callable[torch.Tensor, torch.Tensor] = <built-in method sum of type object>) → torch.Tensor[source]¶ See
torchtrainingnal.metrics.classification.binary.TruePositivefor details.